Рентгеновский анализ металлов. Рентгеноструктурный анализ - изучение структуры веществ

04.08.2023
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Рентгеновский структурный анализ

методы исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Р. с. а. наряду с нейтронографией (См. Нейтронография) и электронографией (См. Электронография) является дифракционным структурным методом; в его основе лежит взаимодействие рентгеновского излучения с электронами вещества, в результате которого возникает Дифракция рентгеновских лучей . Дифракционная картина зависит от длины волны используемых рентгеновских лучей (См. Рентгеновские лучи) и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны Рентгеновский структурный анализ1 Å, т. е. порядка размеров атомов. Методами Р. с. а. изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Наиболее успешно Р. с. а. применяют для установления атомной структуры кристаллических тел. Это обусловлено тем, что Кристаллы обладают строгой периодичностью строения и представляют собой созданную самой природой дифракционную решётку для рентгеновских лучей.

Историческая справка. Дифракция рентгеновских лучей на кристаллах была открыта в 1912 немецкими физиками М. Лауэ , В. Фридрихом и П. Книппингом. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещенной за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма , полученная таким методом, носит название лауэграммы (См. Лауэграмма) (рис. 1 ).

Разработанная Лауэ теория дифракции рентгеновских лучей на кристаллах позволила связать длину волны λ излучения, параметры элементарной ячейки кристалла а, b, с (см. Кристаллическая решётка), углы падающего (α 0 , β 0 , γ 0) и дифракционного (α, β, γ) лучей соотношениями:

a (cosα- cosα 0) = h λ,

b (cosβ - cosβ 0) = k λ, (1)

c (cosγ - cosγ 0) =l λ,

В 50-х гг. начали бурно развиваться методы Р. с. а. с использованием ЭВМ в технике эксперимента и при обработке рентгеновской дифракционной информации.

Экспериментальные методы Р. с. а. Для создания условий дифракции и регистрации излучения служат рентгеновские камеры (См. Рентгеновская камера) и рентгеновские дифрактометры (См. Рентгеновский дифрактометр). Рассеянное рентгеновское излучение в них фиксируется на фотоплёнке или измеряется детекторами ядерных излучений (См. Детекторы ядерных излучений). В зависимости от состояния исследуемого образца и его свойств, а также от характера и объёма информации, которую необходимо получить, применяют различные методы Р. с. а. Монокристаллы, отбираемые для исследования атомной структуры, должны иметь размеры Рентгеновский структурный анализ 0,1 мм и по возможности обладать совершенной структурой. Исследованием дефектов в сравнительно крупных почти совершенных кристаллах занимается Рентгеновская топография , которую иногда относят к Р. с. а.

Метод Лауэ - простейший метод получения рентгенограмм от монокристаллов. Кристалл в эксперименте Лауэ неподвижен, а используемое рентгеновское излучение имеет непрерывный спектр. Расположение дифракционных пятен на лауэграммах (рис. 1 ) зависит от симметрии кристалла (См. Симметрия кристаллов) и его ориентации относительно падающего луча. Метод Лауэ позволяет установить принадлежность исследуемого кристалла к одной и 11 лауэвских групп симметрии и ориентировать его (т. е. определять направление кристаллографических осей) с точностью до нескольких угловых минут. По характеру пятен на лауэграммах и особенно появлению Астеризм а можно выявить внутренние напряжения и некоторые др. дефекты кристаллической структуры. Методом Лауэ проверяют качество монокристаллов при выборе образца для его более полного структурного исследования.

Методы качания и вращения образца используют для определения периодов повторяемости (постоянной решётки) вдоль кристаллографического направления в монокристалле. Они позволяют, в частности, установить параметры а , b, с элементарной ячейки кристалла. В этом методе используют монохроматическое рентгеновское излучение, образец приводится в колебательное или вращательное движение вокруг оси, совпадающей с кристаллографическим направлением, вдоль которого и исследуют период повторяемости. Пятна на рентгенограммах качания и вращения, полученных в цилиндрических кассетах, располагаются на семействе параллельных линий. Расстояния между этими линиями, длина волны излучения и диаметр кассеты рентгеновской камеры позволяют вычислить искомый период повторяемости в кристалле. Условия Лауэ для дифракционных лучей в этом методе выполняются за счёт изменения углов, входящих в соотношения (1) при качании или вращении образца.

Рентгенгониометрические методы. Для полного исследования структуры монокристалла методами Р. с. а. необходимо не только установить положение, но и измерить интенсивности как можно большего числа дифракционных отражений, которые могут быть получены от кристалла при данной длине волны излучения и всех возможных ориентациях образца. Для этого дифракционную картину регистрируют на фотоплёнке в рентгеновском гониометре (См. Рентгеновский гониометр) и измеряют с помощью Микрофотометр а степень почернения каждого пятна на рентгенограмме. В рентгеновском дифрактометре (См. Рентгеновский дифрактометр) можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов. Чтобы иметь полный набор отражений, в рентгеновских гониометрах получают серию рентгенограмм. На каждой из них фиксируются дифракционные отражения, на миллеровские индексы которых накладывают определённые ограничения (например, на разных рентгенограммах регистрируются отражения типа hk 0, hk 1 и т.д.). Наиболее часто производят рентгеногониометрический эксперимент по методам Вайсенберга. Бюргера (рис. 2 ) и де Ионга - Боумена. Такую же информацию можно получить и с помощью рентгенограмм качания.

Для установления атомной структуры средней сложности (Рентгеновский структурный анализ 50-100 атомов в элементарной ячейке) необходимо измерить интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситометры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). Применением в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся значительно сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Метод исследования поликристаллов (Дебая - Шеррера метод). Металлы, сплавы, кристаллические порошки состоят из множества мелких монокристаллов данного вещества. Для их исследования используют монохроматическое излучение. Рентгенограмма (дебаеграмма) поликристаллов представляет собой несколько концентрических колец, в каждое из которых сливаются отражения от определённой системы плоскостей различно ориентированных монокристаллов. Дебаеграммы различных веществ имеют индивидуальный характер и широко используются для идентификации соединений (в том числе и в смесях). Р.с.а. поликристаллов позволяет определять фазовый состав образцов, устанавливать размеры и преимущественную ориентацию (текстурирование) зёрен в веществе, осуществлять контроль за напряжениями в образце и решать другие технические задачи.

Исследование аморфных материалов и частично упорядоченных объектов. Чёткую рентгенограмму с острыми дифракционными максимумами можно получить только при полной трёхмерной периодичности образца. Чем ниже степень упорядоченности атомного строения материала, тем более размытый, диффузный характер имеет рассеянное им рентгеновское излучение. Диаметр диффузного кольца на рентгенограмме аморфного вещества может служить для грубой оценки средних межатомных расстояний в нём. С ростом степени упорядоченности (см. Дальний порядок и ближний порядок) в строении объектов дифракционная картина усложняется и, следовательно, содержит больше структурной информации.

Метод малоуглового рассеяния позволяет изучать пространственные неоднородности вещества, размеры которых превышают межатомные расстояния, т.е. составляют от 5-10 Å до Рентгеновский структурный анализ 10 000 Å. Рассеянное рентгеновское излучение в этом случае концентрируется вблизи первичного пучка - в области малых углов рассеяния. Малоугловое рассеяние применяют для исследования пористых и мелкодисперсных материалов, сплавов и сложных биологических объектов: вирусов, клеточных мембран, хромосом. Для изолированных молекул белка и нуклеиновых кислот метод позволяет определить их форму, размеры, молекулярную массу; в вирусах - характер взаимной укладки составляющих их компонент: белка, нуклеиновых кислот, липидов; в синтетических полимерах - упаковку полимерных цепей; в порошках и сорбентах - распределение частиц и пор по размерам; в сплавах - возникновение и размеры фаз; в текстурах (в частности, в жидких кристаллах) - форму упаковки частиц (молекул) в различного рода надмолекулярные структуры. Рентгеновский малоугловой метод применяется и в промышленности при контроле процессов изготовления катализаторов, высокодисперсных углей и т.д. В зависимости от строения объекта измерения производят для углов рассеяния от долей минуты до нескольких градусов.

Определение атомной структуры по данным дифракции рентгеновских лучей. Расшифровка атомной структуры кристалла включает: установление размеров и формы его элементарной ячейки; определение принадлежности кристалла к одной из 230 федоровских (открытых Е. С. Федоровым (См. Фёдоров)) групп симметрии кристаллов (См. Симметрия кристаллов); получение координат базисных атомов структуры. Первую и частично вторую задачи можно решить методами Лауэ и качания или вращения кристалла. Окончательно установить группу симметрии и координаты базисных атомов сложных структур возможно только с помощью сложного анализа и трудоёмкой математической обработки значений интенсивностей всех дифракционных отражений от данного кристалла. Конечная цель такой обработки состоит в вычислении по экспериментальным данным значений электронной плотности ρ(х, у, z ) в любой точке ячейки кристалла с координатами x , у, z. Периодичность строения кристалла позволяет записать электронную плотность в нём через Фурье ряд :

где V - объём элементарной ячейки, F hkl - коэффициенты Фурье, которые в Р. с. а. называются структурными амплитудами, i = hkl и связана с тем дифракционным отражением, которое определяется условиями (1). Назначение суммирования (2) - математически собрать дифракционные рентгеновские отражения, чтобы получить изображение атомной структуры. Производить таким образом синтез изображения в Р. с. а. приходится из-за отсутствия в природе линз для рентгеновского излучения (в оптике видимого света для этого служит собирающая линза).

Дифракционное отражение - волновой процесс. Он характеризуется амплитудой, равной ∣F hkl ∣, и фазой α hkl (сдвигом фазы отражённой волны по отношению к падающей), через которую выражается структурная амплитуда: F hkl =∣F hkl ∣(cosα hkl + i sinα hkl ). Дифракционный эксперимент позволяет измерять только интенсивности отражений, пропорциональные ∣F hkl ∣ 2 , но не их фазы. Определение фаз составляет основную проблему расшифровки структуры кристалла. Определение фаз структурных амплитуд в принципиальном отношении одинаково как для кристаллов, состоящих из атомов, так и для кристаллов, состоящих из молекул. Определив координаты атомов в молекулярном кристаллическом веществе, можно выделить составляющие его молекулы и установить их размер и форму.

Легко решается задача, обратная структурной расшифровке: вычисление по известной атомной структуре структурных амплитуд, а по ним - интенсивностей дифракционных отражений. Метод проб и ошибок, исторически первый метод расшифровки структур, состоит в сопоставлении экспериментально полученных ∣F hkl ∣ эксп, с вычисленными на основе пробной модели значениями ∣F hkl ∣ выч. В зависимости от величины фактора расходимости

Принципиально новый путь к расшифровке атомных структур монокристаллов открыло применение т. н. функций Патерсона (функций межатомных векторов). Для построения функции Патерсона некоторой структуры, состоящей из N атомов, перенесём её параллельно самой себе так, чтобы в фиксированное начало координат попал сначала первый атом. Векторы от начала координат до всех атомов структуры (включая вектор нулевой длины до первого атома) укажут положение N максимумов функции межатомных векторов, совокупность которых называется изображением структуры в атоме 1. Добавим к ним ещё N максимумов, положение которых укажет N векторов от второго атома, помещенного при параллельном переносе структуры в то же начало координат. Проделав эту процедуру со всеми N атомами (рис. 3 ), мы получим N 2 векторов. Функция, описывающая их положение, и есть функция Патерсона.

Для функции Патерсона Р (u, υ, ω ) (u, υ, ω - координаты точек в пространстве межатомных векторов) можно получить выражение:

из которого следует, что она определяется модулями структурных амплитуд, не зависит от их фаз и, следовательно, может быть вычислена непосредственно по данным дифракционного эксперимента. Трудность интерпретации функции Р (u, υ, ω ) состоит в необходимости нахождения координат N атомов из N 2 её максимумов, многие из которых сливаются из-за перекрытий, возникающих при построении функции межатомных векторов. Наиболее прост для расшифровки Р (u, υ, ω ) случай, когда в структуре содержится один тяжёлый атом и несколько лёгких. Изображение такой структуры в тяжёлом атоме будет значительно отличаться от др. её изображений. Среди различных методик, позволяющих определить модель исследуемой структуры по функции Патерсона, наиболее эффективными оказались так называемые суперпозиционные методы, которые позволили формализовать её анализ и выполнять его на ЭВМ.

Методы функции Патерсона сталкиваются с серьёзными трудностями при исследовании структур кристаллов, состоящих из одинаковых пли близких по атомному номеру атомов. В этом случае более эффективными оказались Так называемые прямые методы определения фаз структурных амплитуд. Учитывая тот факт, что значение электронной плотности в кристалле всегда положительно (или равно нулю), можно получить большое число неравенств, которым подчиняются коэффициенты Фурье (структурные амплитуды) функции ρ(x , у, z ). Методами неравенств можно сравнительно просто анализировать структуры, содержащие до 20-40 атомов в элементарной ячейке кристалла. Для более сложных структур применяются методы, основанные на вероятностном подходе к проблеме: структурные амплитуды и их фазы рассматриваются как случайные величины; из физических представлений выводятся функции распределения этих случайных величин, которые дают возможность оценить с учётом экспериментальных значений модулей структурных амплитуд наиболее вероятные значения фаз. Эти методы также реализованы на ЭВМ и позволяют расшифровать структуры, содержащие 100-200 и более атомов в элементарной ячейке кристалла.

Итак, если фазы структурных амплитуд установлены, то по (2) может быть вычислено распределение электронной плотности в кристалле, максимумы этого распределения соответствуют положению атомов в структуре (рис. 4 ). Заключительное уточнение координат атомов проводится на ЭВМ Наименьших квадратов метод ом и в зависимости от качества эксперимента и сложности структуры позволяет получить их с точностью до тысячных долей Å (с помощью современного дифракционного эксперимента можно вычислять также количественные характеристики тепловых колебаний атомов в кристалле с учётом анизотропии этих колебаний). Р. с. а. даёт возможность установить и более тонкие характеристики атомных структур, например распределение валентных электронов в кристалле. Однако эта сложная задача решена пока только для простейших структур. Весьма перспективно для этой цели сочетание нейтронографических и рентгенографических исследований: нейтронографические данные о координатах ядер атомов сопоставляют с распределением в пространстве электронного облака, полученным с помощью Р. с. а. Для решения многих физических и химических задач совместно используют рентгеноструктурные исследования и резонансные методы.

Вершина достижений Р. с. а. - расшифровка трёхмерной структуры белков, нуклеиновых кислот и других макромолекул. Белки в естественных условиях, как правило, кристаллов не образуют. Чтобы добиться регулярного расположения белковых молекул, белки кристаллизуют и затем исследуют их структуру. Фазы структурных амплитуд белковых кристаллов можно определить только в результате совместных усилий рентгенографов и биохимиков. Для решения этой проблемы необходимо получить и исследовать кристаллы самого белка, а также его производных с включением тяжёлых атомов, причём координаты атомов во всех этих структурах должны совпадать.

О многочисленных применениях методов Р. с. а. для исследования различных нарушений структуры твёрдых тел под влиянием всевозможных воздействий см. в ст. Рентгенография материалов .

Лит.: Белов Н. В., Структурная кристаллография, М., 1951; Жданов Г. С., Основы рентгеноструктурного анализа, М. - Л., 1940; Джеймс Р., Оптические принципы дифракции рентгеновских лучей, пер. с англ., М., 1950; Бокий Г. Б., Порай-Кошиц М. А., Рентгеноструктурный анализ, М., 1964; Порай-Кошиц М. А., Практический курс рентгеноструктурного анализа, М., 1960: Китайгородский А. И., Теория структурного анализа, М., 1957; Липеон Г., Кокрен В., Определение структуры кристаллов, пер. с англ., М., 1961; Вайнштейн Б. К., Структурная электронография, М., 1956; Бэкон Дж., Дифракция нейтронов, пер. с англ., М., 1957; Бюргер М., Структура кристаллов и векторное пространство, пер. с англ., М., 1961; Гинье А., Рентгенография кристаллов, пер. с франц., М., 1961; Woolfson М. М., An introduction to X-ray crystallography, Camb., 1970: Ramachandran G. N., Srinivasan R., Fourier methode in crystallography, N. Y., 1970; Crystallographic computing, ed. F. R. Ahmed, Cph., 1970; Stout G. H., Jensen L. H., X-ray structure determination, N. Y. - L., .

В. И. Симонов.

Рис. 9. а. Проекция на плоскость ab функции межатомных векторов минерала баотита O 16 Cl]. Линии проведены через одинаковые интервалы значений функции межатомных векторов (линии равного уровня). б. Проекция электронной плотности баотита на плоскость ab, полученная расшифровкой функции межатомных векторов (a). Максимумы электронной плотности (сгущения линий равного уровня) отвечают положениям атомов в структуре. в. Изображение модели атомной структуры баотита. Каждый атом Si расположен внутри тетраэдра, образованного четырьмя атомами O; атомы Ti и Nb - в октаэдрах, составленных атомами O. Тетраэдры SiO 4 и октаэдры Ti(Nb)O 6 в структуре баотита соединены, как показано на рисунке. Часть элементарной ячейки кристалла, соответствующая рис. а и б, выделена штриховой линией. Точечные линии на рис. а и б определяют нулевые уровни значений соответствующих функций.

Физическая энциклопедия - РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ, исследование атомной структуры образца вещества по картине дифракции на нем рентгеновского излучения. Позволяет установить распределение электронной плотности вещества, по которому определяют род атомов и их… … Иллюстрированный энциклопедический словарь

- (рентгеноструктурный анализ), совокупность методов исследования атомной структуры вещества с помощью дифракции рентгеновских лучей. По дифракционной картине устанавливают распределение электронной плотности вещества, а по ней род атомов и их… … Энциклопедический словарь

- (рентгено структурный анализ), метод исследования атомно мол. строения в в, гл. обр. кристаллов, основанный на изучении дифракции, возникающей при взаимод. с исследуемым образцом рентгеновского излучения длины волны ок. 0,1 нм. Используют гл. обр … Химическая энциклопедия - (см. РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ, НЕЙТРОНОГРАФИЯ, ЭЛЕКТРОНОГРАФИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

Определение строения в в и материалов, т. е. выяснение расположения в пространстве составляющих их структурных единиц (молекул, ионов, атомов). В узком смысле С. а. определение геометрии молекул и мол. систем, к рую обычно описывают набором длин… … Химическая энциклопедия

В природе встречается примерно 10 12 различных белков, выполняющих самые разнообразные функции. Это и белки-ферменты, катализирующие биохимические процессы в живой клетке; и белки-переносчики, позволяющие другим молекулам проходить через ядерные или клеточные мембраны или перемещаться между клетками всего организма; и иммуноглобулярные белки, отличающиеся высокой специфичностью взаимодействия с антигенами, что приводит к активации сигнальных путей, обеспечивающих иммунный ответ клеток. Это лишь несколько примеров уникальных свойств белковых молекул. По образному выражению Фрэнсиса Крика, белки важны прежде всего потому, что они могут выполнять самые разнообразные функции, причем с необыкновенной легкостью и изяществом.

При всем своем структурном и функциональном многообразии все природные белки построены из 20 аминокислот, соединенных в соответствии с кодом белкового синтеза. В зависимости от последовательности аминокислотных остатков в полипептидной цепи формируется определенная стабильная трехмерная структура белка, определяющая его структурные и функциональные свойства. Например, для каждого фермента характерна вполне определенная конформация активного центра, обеспечивающего специфическое взаимодействие с молекулами субстратов и осуществляющего каталитический акт. Причем для эффективного образования фермент-субстратного комплекса большое значение имеет не только геометрическое соответствие (комплементарность) молекул фермента и субстрата, но и образование водородных связей, электростатические и гидрофобные взаимодействия между атомами активного центра фермента и молекулы субстрата. Таким образом, любая белковая молекула характеризуется уникальностью структуры, которая определяет уникальность ее функции.

Выяснение пространственной организации белков – одно из основных направлений современной биохимии. Во многих случаях знание структуры белка и его комплекса с ингибиторами является решающим фактором при создании лекарственных препаратов.

Одним из важнейших экспериментальных методов, позволяющих с атомарной точностью узнать, что представляет собой трехмерная структура белка, т.е. определить пространственные координаты всех атомов исследуемого объекта, является рентгеноструктурный, или кристаллографический, анализ. Зная положение каждого атома, можно вычислить межатомные расстояния, валентные углы, углы вращения вокруг связей, распределение поверхностного заряда и другие детали молекулярной геометрии. Эти данные нужны химикам, биохимикам и биологам, изучающим зависимости между структурными характеристиками и функциональными свойствами, а также специалистам, занимающимся изучением электронной структуры молекул и молекулярных взаимодействий. Особое место рентгеноструктурного анализа среди других экспериментальных методов отражает тот факт, что с момента открытия рентгеновских лучей в 1901 г. по настоящее время работы в этой области 12 раз отмечались Нобелевскими премиями.

Применение рентгеноструктурного анализа для исследования сложноорганизованных биологических объектов началось после 1953 г., когда сотрудник Кавендишской лаборатории Кембриджского университета Макс Перутц нашел способ определения структуры крупных молекул, таких как миоглобин и гемоглобин. С тех пор рентгеноструктурный анализ молекул белка помогает нам понять химию биологических реакций. На сегодняшний день известны структуры около 15 тыс. белков и их комплексов с биологически важными молекулами.

Рентгеновские лучи являются электромагнитными волнами с длинами в диапазоне 0,01–10 нм. С коротковолновой стороны они соседствуют с -лучами (длины волн менее 0,1 нм), с длинноволновой – с ультрафиолетовыми (длины волн примерно 10–380 нм).

Для проведения рентгеновского эксперимента необходимо монохроматическое рентгеновское излучение (т.е. строго определенной длины волны). Для этой цели используются различные фильтры и монохроматоры.

Обычно, когда человек слышит о рентгеновском исследовании, он вспоминает рентгеновский кабинет в поликлинике. На самом деле рентгеноструктурный анализ не имеет ничего общего с медицинскими исследованиями. Медицинская рентгеноскопия основана на различии в степени поглощения рентгеновских лучей разными тканями, а рентгеновская кристаллография – на рассеянии рентгеновских лучей электронами атомов. Если в медицине мы получаем рентгеновский снимок исследуемого объекта, то в рентгеновской кристаллографии снимки не содержат никакого изображения чего бы то ни было.

Как же ставится рентгеновский эксперимент? Принципиальная схема проста (рис. 1): исследуемый объект помещают в пучок рентгеновских лучей и измеряют интенсивность рассеянного в различных направлениях излучения. Самый простой способ – поместить на пути пучка лучей фотопленку и по степени потемнения пятна после проявления судить об интенсивности рассеяния в этом направлении. Конечно, на сегодняшний день существуют и более совершенные методы, но сейчас это не важно. В данном случае важно то, что мы смотрим не на интенсивность лучей, прошедших сквозь объект, а на интенсивность лучей, возникших там, где их вроде бы и не должно было быть.

Рис. 1. Схема рентгеновского эксперимента

Итак, на входе мы имеем неизвестный объект, на выходе – набор интенсивностей рассеянных в различных направлениях лучей, или дифракционную картину. Теперь необходимо связать полученную в эксперименте информацию с атомной структурой исследуемого объекта. Перечислим основные положения, на которых строится простейшая математическая модель рассеяния рентгеновских лучей:

1) пучок рентгеновских лучей является плоской монохроматической электромагнитной волной;
2) под воздействием этой электромагнитной волны каждый электрон приходит в движение, которое может быть описано уравнениями для свободных зарядов;
3) движущийся электрон является, в свою очередь, источником новой рассеянной сферической электромагнитной волны, распространяющейся во всех направлениях;
4) эти новые волны суммируются и определяют интенсивность излучения в интересующем нас направлении.

Такая модель называется кинематической теорией рассеяния . Ее основной недочет заключается в том, что на электрон действует не только первичный пучок, но и рассеянные волны, и их влияние может изменять характер его движения. Попытка учесть эти поправки делается в более изощренной динамической теории рассеяния, однако для практических приложений более простая кинематическая теория рассеяния оказывается, как правило, вполне достаточной.

Метод рентгеноструктурного анализа основан на дифракции рентгеновских лучей на кристаллической решетке и поэтому применим только к веществам в кристаллическом состоянии. Это связано с тем, что для регистрации дифракционной картины рассеяния необходимо иметь достаточное количество рассеивающих электронов. Но если образец состоит из большого числа произвольно ориентированных идентичных молекул (раствор), то картина рассеяния будет определяться какими-то усредненными по всевозможным ориентациям характеристиками и вряд ли позволит получить детальную информацию об атомной структуре. Другое дело, если большое количество одинаковых молекул ориентированы одинаково. Такую возможность дают нам кристаллические образцы.

Говоря простыми словами (и не вдаваясь в сложные математические формулировки), кристалл – это такой образец исследуемого вещества, в котором много (~10 12) идентичных молекул находятся в одинаковой ориентации и их центры образуют правильную трехмерную решетку.

Основная особенность структуры каждого кристалла состоит в том, что он построен из регулярно расположенных в пространстве отдельных атомов или групп атомов. Если каждую повторяющуюся структурную единицу заменить точкой, или узлом, то получится трехмерная кристаллическая решетка (рис. 2). Решетку можно представить себе как систему одинаковых параллелепипедов. Каждый такой параллелепипед носит название «элементарная ячейка кристалла» и описывается шестью параметрами: длинами ребер (a, b, c) и углами между ними (, , ).

Одна из основных претензий к методу рентгеноструктурного анализа с самого начала исследования структур белков – это то, что в жизни белки находятся в растворе, а при исследовании мы их кристаллизуем. Возникает логичный вопрос: не происходит ли принципиальных искажений структуры молекул белка при кристаллизации? Принято считать, что сильных искажений все-таки не происходит. Доводы в пользу такой позиции следующие.

Во-первых, ряд белков сохраняют ферментативную активность и в закристаллизованном состоянии, т.е. структура изменяется не настолько, чтобы белок стал «неработоспособен». Другое соображение: в кристаллах биомакромолекул значительный объем (от 30 до 80%) занимает растворитель, т.е. упаковка молекул белка в кристалле не плотная и вряд ли вызывает существенные искажения. Некоторые искажения в свободных петлях возможны, но структура активного центра сохраняется. Еще одно подтверждение: альтернативное определение структур некоторых белков методом двумерного ядерного магнитного резонанса не дало существенных расхождений со структурами, расшифрованными рентгеновскими методами.

Монохроматическое рентгеновское излучение, проходя через кристалл, рассеивается в основном на электронных оболочках периодически повторяющихся атомов и образует дифракционную картину, или рентгенограмму (рис. 3). Поэтому экспериментальные рентгеновские данные позволяют судить об особенностях расположения электронов в элементарных кристаллических ячейках. Электрон обладает волновыми свойствами, и его положение в пространстве характеризуется не точными координатами, а функцией распределения электронной плотности (r), которая дает среднее по времени число электронов, приходящееся на 1 3 (кубический ангстрем). На основании этой функции можно судить о расположении атомов в элементарных ячейках, т.к. каждому атому соответствует сгусток электронной плотности определенной величины. Таким образом, при обработке данных рентгеновского эксперимента нужно решить две задачи.

Рис. 3. В дифракционной картине заключена вся информация о структуре белка

1. Из данных рентгенограммы получить карту распределения электронной плотности (r) в кристалле исследуемого объекта. На этом этапе возникает принципиальная трудность (о которой речь пойдет ниже), связанная с невозможностью получить из эксперимента всю информацию, необходимую для восстановления исследуемой структуры. Для получения недостающей части информации используют различные обходные пути. Но универсального пути нет, и в каждом случае исследователь выбирает наиболее подходящий, основываясь на своем опыте и интуиции.

2. На основании карты распределения электронной плотности (r) определить положения атомов в исследуемом объекте. Для решения этой задачи структура многократно подвергается программной обработке и ручной доводке для достижения наилучшего совпадения с электронной плотностью.

Основные этапы определения структуры белка

Выделение, очистка

С этого этапа начинаются практически все экспериментальные исследования белковых структур. Для получения нужного белка используют различные биохимические методы. Последовательность операций по выделению белков обычно сводится к измельчению биологического материала (гомогенизация), извлечению из него белков, а точнее – переводу белков в растворенное состояние (экстракция) и выделению исследуемого белка из смеси других белков, т.е. очистке и получению индивидуального белка. На этом этапе наибольшая сложность заключается в наработке достаточного для эксперимента количества чистого белка.

Кристаллизация

Получение кристаллов, пригодных для рентгеноструктурного анализа, зачастую процесс трудоемкий и далеко не тривиальный, особенно для сложных соединений, таких как белки и нуклеиновые кислоты. Наличие пересыщенного раствора – необходимое условие кристаллизации. Для получения такого раствора используют различные способы. Один из них заключается в постепенном удалении растворителя обычным испарением, что приводит к росту концентрации вещества в растворе, который в какой-то момент становится пересыщенным. Другой способ связан с использованием зависимости растворимости от температуры. Например, если растворимость с увеличением температуры повышается, можно приготовить насыщенный раствор при более высокой температуре, а затем медленно охладить его. Благодаря понижению растворимости в процессе охлаждения получается пересыщенный раствор. Третий способ связан с введением в раствор какого-либо вещества, вызывающего понижение растворимости. В качестве таких веществ используют либо соли, либо органические растворители. Кроме того, растворимость белков и нуклеиновых кислот сильно зависит от pH раствора, это тоже можно использовать для получения пересыщенных растворов.

На практике все намного сложнее. До сих пор не существует универсальных способов подбора оптимальных условий кристаллизации. Для каждого конкретного белка исследователь ищет эти условия, меняя тип буфера, значения pH, температуры, концентрации самого белка, осаждающей соли и т.д. В этой работе важно найти такие условия, при которых получится именно кристалл, а не выпадет соль. Поэтому выращивание биологических кристаллов не только научное направление, но и искусство. Иногда, чтобы заставить белок кристаллизоваться, его центрифугируют или даже отправляют в невесомость.

Выбор кристаллов для рентгеновского эксперимента проводят с помощью микроскопа. Для этой цели особенно полезен поляризационный микроскоп, позволяющий с помощью поляризационного света установить наличие дефектов в кристалле. Оптимальными считаются монокристаллы с размером каждой из сторон 0,2–0,6 мм. Кристаллы должны быть без дефектов и, по возможности, с хорошей огранкой. Наличие дефектов приводит к ошибкам при экспериментальном измерении дифракционной картины и, как следствие, к неточности (а часто и к невозможности) расшифровки кристаллической структуры. При повышении сложности исследуемого объекта требования к качеству кристаллов повышаются. Как выглядят кристаллы белков, показано на рис. 4.

Рис. 4. Кристаллы белков: а – кристаллы зеленого флуоресцентного белка zGFP506; б – кристаллы мутанта белка zGFP506 с аминокислотной заменой N66D

К сожалению, далеко не всегда удается получить кристалл изучаемого белка, поэтому этот этап является главным ограничением метода рентгеноструктурного анализа белков.

Рентгеновский эксперимент, обработка результатов

В качестве источника рентгеновских лучей в настоящее время стараются использовать синхротронный ускоритель. Это довольно дорогое сооружение. Лабораторные рентгеновские установки тоже используются, но синхротронное излучение имеет существенные преимущества.

Во-первых, это мощность пучка. Здесь два плюса. Первый понятен – сокращается время эксперимента. Второй – биологические кристаллы имеют тенденцию разрушаться под действием рентгеновского излучения. Процесс разрушения занимает определенное время, и если пучок мощный, то можно успеть зарегистрировать нужную картину, пока кристалл не разрушился.

Во-вторых, это возможность получить желаемую длину волны. Рентгеновские трубки дают мощный пучок только фиксированной длины волны (обычно около 1,57), в то время как при проведении эксперимента зачастую необходимо иметь возможность выбора длины волны. Это позволяет сделать синхротрон.

Обработка результатов рентгеновского эксперимента базируется на мощном математическом аппарате, который здесь мы рассматривать не будем. Когда монохроматический рентгеновский луч падает на определенным образом ориентированный кристалл, то рассеяние происходит в дискретных направлениях, определяемых кристаллической решеткой. Дифракционная картина, возникающая на пленке детектора (рис. 3), представляет собой набор пятен, или рефлексов. Измерив интенсивность рефлексов, можно получить значения модулей т.н. структурных факторов (комплексных чисел), описывающих распределение электронной плотности в кристалле (r). Но чтобы однозначно определить (r), нужно знать еще и соответствующие значения фаз этих факторов, информация о которых не содержится в дифракционной картине. Если для какого-либо кристалла фазы определены, то расчет положений атомов этого кристалла не составляет принципиальных трудностей.

Таким образом, центральная проблема метода рентгеноструктурного анализа, называемая фазовой проблемой , заключается в невозможности получения всех необходимых для расчета данных непосредственно из эксперимента.

Общего решения фазовой проблемы на сегодня не существует. Каждый случай требует специального подхода. Здесь важно понимать, что новая информация не берется ниоткуда. Для того чтобы получить значения фаз, мы должны либо сделать какие-то новые предположения о структуре и особенностях объекта, либо провести новые эксперименты. Ниже приведены основные подходы к решению «фазовой проблемы», применяемые в белковой кристаллографии.

Изоморфное замещение

Можно попытаться внедрить в молекулы кристалла некую метку – один или несколько тяжелых атомов (например, ионы тяжелых металлов), которые могут быть либо добавлены к нативной структуре, либо могут замещать часть ее атомов (рис. 5).

Под изоморфным внедрением тяжелых атомов подразумевается, что они присоединяются к каждому экземпляру молекулы в одном и том же месте, и структура молекулы белка при этом не изменяется. Затем, проведя дополнительно рентгеновский эксперимент с таким модифицированным соединением и определив изменения интенсивностей рефлексов по сравнению с нативным белком, можно получить дополнительную информацию о значениях фаз. Трудность этого метода заключается в том, что не всегда удается получить хорошее изоморфное производное, а также в необходимости проведения дополнительного рентгеновского эксперимента.

Метод изоморфного замещения является основным методом решения фазовой проблемы при определении структуры биологических макромолекул. Сам этот метод возник достаточно давно, но именно при работе с белками он приобрел исключительно важную роль. Причин этому две:

1) долгое время он являлся единственным методом, позволяющим решать фазовую проблему для белков;

2) именно для белков удается «достаточно просто» получать изоморфные производные. Последнее связано с тем, что кристаллы белка довольно рыхлые – в них от 30 до 70% объема занято растворителем, т.е. в кристаллах есть «пустоты», куда могут поместиться дополнительные атомы.

Использование эффекта аномального рассеяния

Этот метод основан на варьировании длины волны падающего на кристалл рентгеновского излучения вблизи значений, при которых наблюдается эффект резонанса (и соответствующее аномальное рассеяние) для нескольких «специальных» атомов, содержащихся в структуре макромолекулы. Если аномально рассеивающих атомов в белке нет, иногда можно попытаться присоединить их химическим путем. Дифракционные картины получают для нескольких значений длины волны падающего луча и на основании анализа разностей интенсивностей соответствующих рефлексов оценивают значения фаз.

Успех метода аномального рассеяния, как и изоморфного замещения, во многом зависит от возможности экспериментального получения производных с требуемыми свойствами.

Упомянутые два способа отвечают попытке решить фазовую проблему за счет дополнительной информации, получаемой из дополнительных экспериментов. Следующий способ применяют в ситуации, когда нам известна структура близкого (гомологичного) белка.

Метод молекулярного замещения

В биологии распространена ситуация, когда существуют ряды объектов, похожих друг на друга, т.е. имеющих структурную гомологию. Такой гомологией могут обладать, например, белки одного типа, выделенные из разных организмов. В этом случае можно надеяться, что фазы структурных факторов, рассчитанные по известной атомной модели гомологичного белка, будут достаточно хорошим начальным приближением к значениям неизвестных фаз, отвечающих исследуемому объекту. Комбинируя их далее с измеренными в эксперименте модулями структурных факторов для исследуемого объекта, мы можем получить хорошее приближение к искомому распределению электронной плотности.

Однако для того чтобы надеяться на успех на этом пути, надо, как минимум, для начала «разместить» известный гомологичный объект на том же месте и в той же ориентации, что и исследуемый белок. Процедуру создания такого «компьютерного гибрида», в котором внутри элементарной ячейки кристалла одного белка размещается молекула другого, называют методом молекулярного замещения. Судить о том, насколько полученное размещение близко к действительности, можно, сравнивая рассчитанные по модели модули структурных факторов с величинами, полученными в эксперименте. Разумеется, такое замещение – всего лишь умозрительная процедура, и никакого химического замещения не происходит.

«Прямые» методы

В отличие от предыдущих подходов, эти методы опираются не на дополнительный эксперимент или информацию о структуре гомологичного объекта, а на почти философскую идею об атомности изучаемого объекта. Под «прямыми» методами в кристаллографии понимаются стратегии определения структур, использующие в качестве стартовой информации только набор интенсивностей рефлексов, полученный в рентгеновском эксперименте. Для определения фаз структурных факторов в них используют вероятностный подход. «Прямые» методы более объективны в том смысле, что они зависят только от применения математических соотношений.

На основе «прямых» методов определяют структуры большинства низкомолекулярных соединений. Эти методы не требуют ни дополнительных экспериментов, ни тонкой биохимической работы по получению изоморфных производных, ни наличия известных гомологичных структур, но к сожалению, пока не применимы к структурам белков из-за принципиальных ограничений на количество атомов исследуемой структуры.

Если известны и модуль, и фаза структурных факторов, то мы можем восстановить распределение (r), рассчитав обратное преобразование Фурье. Это не сложная с современной точки зрения вычислительная задача, и этот шаг выделяется потому, что он подводит итог важного этапа работ. Мы, наконец, получаем возможность «взглянуть» на интересующий нас объект. И по тому, насколько «четким» получилось изображение, – судить об успешности всех предыдущих этапов работы. А в случае неудачи – повторить все сначала.

Следующий этап заключается в построении приближенной атомной модели по рассчитанным картам распределения электронной плотности. Эта работа требует максимального использования интеллекта человека и осуществляется квалифицированными специалистами.

С помощью специальных компьютерных программ, исследователь вручную вписывает атомы белковой структуры в полученную на предыдущем этапе карту электронной плотности (рис. 6).

Брест, 2010

В рентгеноструктурном анализе в основном используются три метода

1. Метод Лауэ. В этом методе пучок излучения с непрерывным спектром падает на неподвижный монокристалл. Дифракционная картина регистрируется на неподвижную фотопленку.

2. Метод вращения монокристалла. Пучок монохроматического излучения падает на кристалл, вращающийся (или колеблющийся) вокруг некоторого кристаллографического направления. Дифракционная картина регистрируется на неподвижную фотопленку. В ряде случаев фотопленка движется синхронно с вращением кристалла; такая разновидность метода вращения носит название метода развертки слоевой линии.

3. Метод порошков или поликристаллов (метод Дебая-Шеррера-Хэлла). В этом методе используется монохроматический пучок лучей. Образец состоит из кристаллического порошка или представляет собой поликристаллический агрегат.

Метод Лауэ

Метод Лауэ применяется на первом этапе изучения атомной структуры кристаллов. С его помощью определяют сингонию кристалла и лауэвский класс (кристаллический класс Фриделя с точностью до центра инверсии). По закону Фриделя никогда невозможно обнаружить отсутствие центра симметрии на лауэграмме и поэтому добавление центра симметрии к 32-м кристаллическим классам уменьшает их количество до 11. Метод Лауэ применяется главным образом для исследования монокристаллов или крупнокристаллических образцов. В методе Лауэ неподвижный монокристалл освещается параллельным пучком лучей со сплошным спектром. Образцом может служить как изолированный кристалл, так и достаточно крупное зерно в поликристаллическом агрегате.

Формирование дифракционной картины происходит при рассеянии излучения с длинами волн от l min = l 0 = 12,4/U , где U- напряжение на рентгеновской трубке, до l m - длины волны, дающей интенсивность рефлекса (дифракционного максимума), превышающую фон хоть бы на 5 %. l m зависит не только от интенсивности первичного пучка (атомного номера анода, напряжения и тока через трубку), но и от поглощения рентгеновских лучей в образце и кассете с пленкой. Спектру l min - l m соответствует набор сфер Эвальда с радиусами от 1/ l m до 1/l min , которые касаются узла 000 и ОР исследуемого кристалла (рис.1).

Тогда для всех узлов ОР, лежащих между этими сферами, будет выполняться условие Лауэ (для какой-то определенной длины волны в интервале (l m ¸ l min)) и, следовательно, возникает дифракционный максимум - рефлекс на пленке. Для съемки по методу Лауэ применяется камера РКСО (рис.2).

Рис. 2 Камера РКСО


Здесь пучок первичных рентгеновских лучей вырезается диафрагмой 1 с двумя отверстиями диаметрами 0,5 - 1,0 мм. Размер отверстий диафрагмы подбирается таким образом, чтобы сечение первичного пучка было больше поперечного сечения исследуемого кристалла. Кристалл 2 устанавливается на гониометрической головке 3, состоящей из системы двух взаимно перпендикулярных дуг. Держатель кристалла на этой головке может перемещаться относительно этих дуг, а сама гониометрическая головка может быть повернута на любой угол вокруг оси, перпендикулярной к первичному пучку. Гониометрическая головка позволяет менять ориентацию кристалла по отношению к первичному пучку и устанавливать определенное кристаллографическое направление кристалла вдоль этого пучка. Дифракционная картина регистрируется на фотопленку 4, помещенную в кассету, плоскость которой расположена перпендикулярно к первичному пучку. На кассете перед фотопленкой натянута тонкая проволока, расположенная параллельно оси гониометрической головки. Тень от этой проволоки дает возможность определить ориентацию фотопленки по отношению к оси гониометрической головки. Если образец 2 располагается перед пленкой 4, то рентгенограммы, полученные таким образом называются лауэграммами. Дифракционная картина, регистрируемая на фотопленку, расположенную перед кристаллом, называется эпиграммой. На лауэграммах дифракционные пятна располагаются по зональным кривым (эллипсам, параболам, гиперболам, прямым). Эти кривые являются сечениями дифракционных конусов плоскостью и касаются первичного пятна. На эпиграммах дифракционные пятна располагаются по гиперболам, не проходящим через первичный луч.

Для рассмотрения особенностей дифракционной картины в методе Лауэ пользуются геометрической интерпретацией с помощью обратной решетки. Лауэграммы и эпиграммы являются отображением обратной решетки кристалла. Построенная по лауэграмме гномоническая проекция позволяет судить о взаимном расположении в пространстве нормалей к отражающим плоскостям и получить представление о симметрии обратной решетки кристалла. По форме пятен лауэграммы судят о степени совершенства кристалла. Хороший кристалл дает на лауэграмме четкие пятна. Симметрию кристаллов по лауэграмме определяют по взаимному расположению пятен (симметричному расположению атомных плоскостей должно отвечать симметричное расположение отраженных лучей). (См. рис. 3)


Рис. 3 Схема съемки рентгенограмм по методу Лауэ (а – на просвет, б – на отражение, F – фокус рентгеновской трубки, К – диафрагмы, O – образец, Пл - пленка)

Метод вращения монокристалла

Метод вращения является основным при определении атомной структуры кристаллов. Этим методом определяют размеры элементарной ячейки, число атомов или молекул, приходящихся на одну ячейку. По погасаниям отражений находят пространственную группу (с точностью до центра инверсии). Данные по измерению интенсивности дифракционных максимумов используют при вычислениях, связанных с определением атомной структуры. При съемке рентгенограмм методом вращения кристалл вращается или покачивается вокруг определенного кристаллографического направления при облучении его монохроматическим или характеристическим рентгеновским излучением. Первичный пучок вырезается диафрагмой (с двумя круглыми отверстиями) и попадает на кристалл. Кристалл устанавливается на гониометрической головке так, чтобы одно из его важных направлений (типа , , ) было ориентировано вдоль оси вращения гониометрической головки. Гониометрическая головка представляет собой систему двух взаимно перпендикулярных дуг, которая позволяет устанавливать кристалл под нужным углом по отношению к оси вращения и к первичному пучку рентгеновских лучей. Гониометрическая головка приводится в медленное вращение через систему шестерен с помощью мотора. Дифракционная картина регистрируется на фотопленке, расположенной по оси цилиндрической поверхности кассеты определенного диаметра (86,6 или 57,3 мм).

При отсутствии внешней огранки ориентация кристаллов производится методом Лауэ. Для этой цели в камере вращения предусмотрена возможность установки кассеты с плоской пленкой. Дифракционные максимумы на рентгенограмме вращения располагаются вдоль прямых, называемых слоевыми линиями. Максимумы на рентгенограмме располагаются симметрично относительно вертикальной линии, проходящей через первичное пятно. Часто на рентгенограммах вращения наблюдаются непрерывные полосы, проходящие через дифракционные максимумы. Появление этих полос обусловлено присутствием в излучении рентгеновской трубки непрерывного спектра наряду с характеристическим.

При вращении кристалла вокруг главного кристаллографического направления вращается связанная с ним обратная решетка. При пересечении узлами обратной решетки сферы распространения возникают дифракционные лучи, располагающиеся по образующим конусов, оси которых совпадают с осью вращения кристалла. Все узлы обратной решетки, пересекаемые сферой распространения при ее вращении, составляют эффективную, область, т.е. определяют область индексов дифракционных максимумов, возникающих от данного кристалла при его вращении. Для установления атомной структуры вещества необходимо индицирование рентгенограмм вращения. Индицирование обычно проводится графически с использованием представлений обратной решетки. Методом вращения определяют периоды решетки кристалла, которые вместе с определенными методом Лауэ углами позволяют найти объем элементарной ячейки. Используя данные о плотности, химическом составе и объеме элементарной ячейки, находят число атомов в элементарной ячейке.

Метод порошка

При обычном методе исследования поликристаллических материалов тонкий столбик из измельченного порошка или другого мелкозернистого материала освещается узким пучком рентгеновских лучей с определенной длиной волны. Картина дифракции лучей фиксируется на узкую полоску фотопленки, свернутую в виде цилиндра, по оси которого располагается исследуемый образец. Сравнительно реже применяется съемка на плоскую фотографическую пленку.

Принципиальная схема метода дана на рис. 4.

Рис. 4 Принципиальная схема съемки по методу порошка:

1 – диафрагма; 2 - место входа лучей;

3 - образец: 4 - место выхода лучей;

5 - корпус камеры; 6 - (фотопленка)

Когда пучок монохроматических лучей падает на образец, состоящий из множества мелких кристалликов с разнообразной ориентировкой, то в образце всегда найдется известное количество кристалликов, которые будут расположены таким образом, что некоторые группы плоскостей будут образовывать с падающим лучом угол q, удовлетворяющий условиям отражения.

Рентгеновские лучи, открытые в 1895 г. В. Рентгеном – это электромагнитные колебания весьма малой длины волны, сравнимой с атомными размерами, возникающими при воздействии на вещество быстрыми электронами.

Рентгеновские лучи широко используются в науке и технике.

Их волновая природа установлена в 1912 г. немецкими физиками М.Лауэ, В.Фридрихом и П. Книппингом, открывшими явление дифракции рентгеновских лучей на атомной решётке кристаллов. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещённой за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма, полученная таким методом носит название лауэграммы. Это открытие явилось основой рентгеноструктурного анализа.

Длины волн рентгеновских лучей, используемых в практических целях, лежат в пределах от нескольких ангстрем до долей ангстрема (Å), что соответствует энергии электронов, вызывающих рентгеновское излучение от 10³до10 5 эв.

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.

Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Рентгеноструктурный анализ является основным методом определения структуры кристаллов. При исследовании кристаллов он даёт наибольшую информацию. Это обусловлено тем, что кристаллы обладают строгой периодичностью строения и представляют собой созданною самой природой дифракционную решётку для рентгеновских лучей. Однако он доставляет ценные сведения и при исследовании тел с менее упорядоченной структурой, таких, как жидкости, аморфные тела, жидкие кристаллы, полимеры и другие. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, то есть выполнен фазовый анализ.

В ходе рентгеноструктурного анализа исследуемый образец помещают на пути рентгеновских лучей и регистрируют дифракционную картину, возникающую в результате взаимодействия лучей с веществом. На следующем этапе исследования анализируют дифракционную картину и расчётным путём устанавливают взаимное расположение частиц в пространстве, вызвавшее появление данной картины.

Рентгеноструктурный анализ кристаллических веществ распадается на два этапа.

1) Определение размеров элементарной ячейки кристалла, числа частиц (атомов, молекул) в элементарной ячейке и симметрии расположения частиц (так называемой пространственной группы). Эти данные получают путём анализа геометрии расположения дифракционных максимумов.

2) Расчёт электронной плотности внутри элементарной ячейки и определение координат атомов, которые отождествляются с положением максимумов электронной плотности. Эти данные получают анализом интенсивности дифракционных максимумов.

Методы рентгеновской съёмки кристаллов.

Существуют различные экспериментальные методы получения и регистрации дифракционной картины. В любом случае имеется источник рентгеновского излучения, система для выделения узкого пучка рентгеновских лучей, устройство для закрепления и ориентирования образца в пучке и приёмник рассеянного образцом излучения. Приёмником служит фотоплёнка, либо ионизационные или сцинтилляционные счётчики рентгеновских квантов. Метод регистрации с помощью счётчиков (дифрактометрический) обеспечивает значительно более высокую точность определения интенсивности регистрируемого излучения.

Из условия Вульфа – Брэгга непосредственно следует, что при регистрации дифракционной картины один из двух входящих в него параметров ¾l -длина волны или q -угол падения, должен быть переменным.

Основными рентгеновской съёмки кристаллов являются: метод Лауэ, метод порошка (метод дебаеграмм), метод вращения и его разновидность – метод качания и различные методы рентгенгониометра.

В методе Лауэ на монокристаллический образец падает пучок немонохроматических («белых») лучей (рис.). Дифрагируют лишь те лучи, длины волн которых удовлетворяют условию Вульфа – Брэгга. Дифракционные пятна на лауграмме (рис.) располагаются по эллипсам, гиперболам и прямым, обязательно проходящим через пятно от первичного пучка.

Рис.– Схема метода рентгеновской съёмки по Лауэ: 1- пучок рентгеновских лучей, падающих на монокристаллический образец; 2 – коллиматор; 3 – образец; 4 – дифрагированные лучи; 5 – плоская фотоплёнка;

б – типичная лауэграмма.

Важное свойство лауэграммы состоит в том, что при соответствующей ориентировке кристалла симметрия расположения этих кривых отражает симметрию кристалла. По характеру пятен на лауэграммах можно выявить внутренние напряжения и некоторые другие дефекты кристаллической структуры. Индицирование же отдельных пятен лауэграммы весьма затруднительно. Поэтому метод Лауэ применяют исключительно для нахождения нужной ориентировки кристалла и определения его элементов симметрии. Этим методом проверяют качество моно кристаллов при выборе образца для более полного структурного исследования.

В методе порошка (рис),так же как и во всех остальных описываемых ниже методах рентгеновской съёмки, используется монохроматическое излучение. Переменным параметром является угол q падения так как в поликристаллическом порошковом образце всегда присутствуют кристаллики любой ориентации по отношению к направлению первичного пучка.

Рис– схема рентгеновской съёмки по методу порошка: 1 – первичный пучок; 2 – порошковый или поликристаллический образец; 3 – фотоплёнка, свёрнутая по окружности; 4 – дифракционные конусы; 5 – «дуги» на фотоплёнке, возникающие при пересечении её поверхности с дифракционными конусами;

б – типичная порошковая рентгенограмма (дибаеграмма).

Лучи от всех кристалликов, у которых плоскости с данным межплоскостным расстоянием d hk1 находятся в «отражающем положении», то есть удовлетворяют условию Вульфа – Брэгга, образуют вокруг первичного луча конус с углом растра 4q. Каждому d hk1 соответствует свой дифракционный конус. Пересечение каждого конуса дифрагированных рентгеновских лучей с полоской фотоплёнки, свёрнутой в виде цилиндра, ось которого проходит через образец, приводит к появлению на ней следов, имеющих вид дужек, расположенных симметрично относительно первичного пучка (рис.). Зная расстояния между симметричными «дугами», можно вычислить соответствующие им межплоскостные расстояния d в кристалле.

Метод порошка наиболее прост и удобен с точки зрения техники экспермента, однако единственная поставляемая им информация – выбор межплоскостных расстояний – позволяет расшифровывать самые простые структуры.

В методе вращения (рис.) переменным параметром является угол q.

Съёмка производится на цилиндрическую фотоплёнку. В течение всего времени экспозиции кристаллравномерно вращается вокруг свей оси, совпадающей с каким-либо важным кристаллографическим направлением и с осью образуемого планкой цилиндра. Дифракционные лучи идут по образующим конусов, которые при пересечении с плёнкой дают линии, состоящие из пятен (так называемые слоевые линии.

Метод вращения даёт экспериментатору более богатую информацию, чем метод порошка. По расстояниям между слоевыми линиями можно рассчитать период решётки в направлении оси вращения кристалла.

Рис. – схема рентгеновской съёмки по методу вращения: 1 – первичный пучок;

2 – образец (вращается по стрелке); 3 – фотоплёнка цилиндрической формы;

б – типичная рентгенограмма вращения.

В рассматриваемом методе упрощается индицирование пятен рентгенограммы. Так если кристалл вращается вокруг оси с решётки, то все пятна на линии, проходящей через след первичного луча, имеют индексы (h,k,0), на соседних с ней слоевых линиях – соответственно (h,k,1) и (h,k,1 ¯) и так далее. Однако и метод вращения не даёт всей возможной информации, так никогда неизвестно, при каком угле поворота кристалла вокруг оси вращения образовалось то или иное дифракционное пятно.

В методе качания , который является разновидностью метода вращения, образец не совершает полного вращения, а «качается» вокруг той же оси в небольшом угловом интервале. Это облегчает индицирование пятен, так как позволяет как бы получать рентгенограмму вращения по частям и определять с точностью до величины интервала качания, под каким углом поворота кристалла к первичному пучку возникли те или иные дифракционные пятна.

Наиболее богатую информацию дают методы рентгеногониометра . Рентгеновский гониометр, прибор, с помощью которого можно одновременно регистрировать направление дифрагированных на исследуемом образце рентгеновских лучей и положение образца в момент возникновения дифракции. Один из них – метод Вайссенберга, является дальнейшим развитием метода вращения. В отличие от последнего, в рентгеногониометре Вайссенберга все дифракционные конусы, кроме одного, закрываются цилиндрической ширмой, а пятна оставшегося дифракционного конуса (или, что то же, слоевой линии) «разворачиваются» на всю площадь фотоплёнки путём её возвратно-поступательного осевого перемещения синхронно с вращением кристалла. Это позволяет определить, при какой ориентации кристалла возникло каждое пятно вассенбергограммы.

Рис. Принципиальная схема рентгенгониометра Вайссенберга: 1 – неподвижная ширма, пропускающая только один дифракционный конус; 2 – кристалл, поворачивающийся вокруг оси Х – Х; 3 – цилиндрическая фотоплёнка, двигающаяся поступательно вдоль оси Х – Х синхронно с вращением кристалла 2; 4 – дифракционный конус, пропущенный ширмой; 5 – первичный пучок.

Существуют и другие методы съёмки, в которых применяется одновременное синхронное движение образца и фотоплёнки. Важнейшими из них являются метод фотографирования обратной решётки и прецессионный метод Бюргера. Во всех этих методах использована фотографическая регистрация дифракционной картины. В рентгеновском дифрактометре можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов.

Применение рентгеноструктурного анализа.

Рентгеноструктурный анализ позволяет объективно устанавливать структуру кристаллических веществ, в том числе таких сложных, как витамины, антибиотики, координационные соединения и т.д. Полное структурное исследование кристалла часто позволяет решить и чисто химические задачи, например установление или уточнение химической формулы, типа связи, молекулярного веса при известной плотности или плотности при известном молекулярном весе, симметрии и конфигурации молекул и молекулярных ионов.

Рентгеноструктурный анализ с успехом применяется для изучения кристаллического состояния полимеров. Ценные сведения даёт рентгеноструктурный анализ и при исследовании аморфных и жидких тел. Рентгенограммы таких тел содержат несколько размытых дифракционных колец, интенсивность которых быстро падает с увеличением q. По ширине, форме и интенсивности этих колец можно делать заключения об особенностях ближнего порядка в той или иной конкретной жидкой или аморфной структуре.

Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая превратилась в отдельную отрасль науки. Понятие «рентгенография» включает в себя, наряду с полным или частичным рентгеноструктурным анализом, также и другие способы использования рентгеновских лучей – рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и другое. Определены структуры чистых металлов и многих сплавов. основанная на рентгеноструктурном анализе кристаллохимия сплавов – один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надёжно установленной, если данные сплавы не исследованы методами рентгеноструктурного анализа. Благодаря применению методов рентгеноструктурного анализа оказалось возможным глубоко изучить структурные изменения, протекающие в металлах и сплавах при их пластической и термической обработке.

Метод рентгеноструктурного анализа свойственны и серьёзные ограничения. Для проведения полного рентгеноструктурного анализа необходимо, чтобы вещество хорошо кристаллизовалось и давало достаточно устойчивые кристаллы. Иногда необходимо проводить исследование при высоких или низких температурах. Это сильно затрудняет проведение эксперимента. Полное исследование очень трудоёмко, длительно и сопряжено с большим объёмом вычислительной работы.

Для установления атомной структуры средней сложности (~50- 100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситомеры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). В связи с этим в последние годы для решения задач рентгеноструктурного анализа получили широкое применение быстродействующие ЭВМ. Однако даже с применением ЭВМ определение структуры остаётся сложной и трудоёмкой работой. Применение в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Позволяя объективно определить структуру молекул и общий характер взаимодействия молекул в кристалле, исследование методом рентгеноструктурного анализа не всегда даёт возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной для этой цели. Серьёзным ограничением метода является также трудность определения положений лёгких атомов и особенно атомов водорода.

Реферат выполнила студентка II курса 2-ой группы Сапегина Н.Л.

Министерство здравоохранения Украины

Национальная фармацевтическая академия Украины

Кафедра физики и математики

Курс биофизика и физические методы анализа

г. Харьков

Введение

Рентгеновские лучи, открытые в 1895 г. В. Рентгеном – это электромагнитные колебания весьма малой длины волны, сравнимой с атомными размерами, возникающими при воздействии на вещество быстрыми электронами.

Рентгеновские лучи широко используются в науке и технике.

Их волновая природа установлена в 1912 г. немецкими физиками М.Лауэ, В.Фридрихом и П.Книппингом, открывшими явление дифракции рентгеновских лучей на атомной решётке кристаллов. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещённой за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма, полученная таким методом носит название лауэграммы. Это открытие явилось основой рентгеноструктурного анализа.

Длины волн рентгеновских лучей, используемых в практических целях, лежат в пределах от нескольких ангстрем до долей ангстрема (Å), что соответствует энергии электронов, вызывающих рентгеновское излучение от 10³ до 10 5 эв.

Рентгеновские спектры.

Различают два типа излучения: тормозное и характеристическое.

Тормозное излучение возникает при торможении электронов антикатодом рентгеновской трубки. Оно разлагается в сплошной спектр, имеющий резкую границу со стороны малых длин волн. Положение этой границы определяется энергией падающих на вещество электронов и не зависит от природы вещества. Интенсивность тормозного спектра быстро растёт с уменьшением массы бомбардирующих частиц и достигает значительной величины при возбуждении электронами.

Характеристические рентгеновские лучи образуются при выбивании электрона одного из внутренних слоёв атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внешнего слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов. Однако между теми и другими спектрами имеется принципиальная разница: структура характеристического спектра рентгеновских лучей (число, относительное расположение и относительная яркость линий), в отличие от оптического спектра газов, не зависит от вещества (элемента), дающего этот спектр.

Спектральные линии характеристического спектра рентгеновских лучей образуют закономерные последовательности или серии. Эти серии обозначаются буквами K, L, M, N…, причем длины волн этих серий возрастают от K к L, от L к М и т. д. Наличие этих серий теснейшим образом связано со строением электронных оболочек атомов.

Характеристические рентгеновские спектры испускают атомы мишени, у которых при столкновении с заряженной частицей высокой энергии или фотоном первичного рентгеновского излучения с одной из внутренних оболочек (K-, L-, M-, … оболочек) вылетает электрон. Состояние атома с вакансией во внутренней оболочке (его начальное состояние) неустойчиво. Электрон одной из внешних оболочек может заполнить эту вакансию, и атом при этом переходит в конечное состояние с меньшей энергией (состояние с вакансией во внешней оболочке).

Избыток энергии атом может испустить в виде фотона характеристического излучения. Поскольку энергия Е 1 начального и Е 2 конечного состояний атома квантованы, возникает линия рентгеновского спектра с частотой n=(Е 1 - Е 2)/h, где h постоянная Планка.

Все возможные излучательные квантовые переходы атома из начального K-состояния образуют наиболее жёсткую (коротковолновую) K-серию. Аналогично образуются L-, M-, N-серии (рис. 1).

Рис. 1. Схема K-, L-, M-уровней атома и основные линии K-, L-серий

Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в системе Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Г. Мозли в 1913 г. показал, что квадратный корень из частоты (или обратной длины волны) данной спектральной линии связан линейной зависимостью с атомным номером элемента Z. Закон Мозли сыграл весьма важную роль в физическом обосновании периодической системы Менделеева.

Другой весьма важной особенностью характеристических спектров рентгеновских лучей является то обстоятельство, что каждый элемент даёт свой спектр независимо от того, возбуждается ли этот элемент к испусканию рентгеновских лучей в свободном состоянии или в химическом соединении. Эта особенность характеристического спектра рентгеновских лучей используется для идентификации различных элементов в сложных соединениях и является основой рентгеноспектрального анализа.

Рентгеноспектральный анализ

Рентгеноспектральный анализ это раздел аналитической химии, использующий рентгеновские спектры элементов для химического анализа веществ. Рентгеноспектральный анализ по положению и интенсивности линий характеристического спектра позволяет установить качественный и количественный состав вещества и служит для экспрессного неразрушающего контроля состава вещества.

В рентгеновской спектроскопии для получения спектра используется явление дифракции лучей на кристаллах или, в области 15-150 Å, на дифракционных штриховых решётках, работающих при малых (1-12°) углах скольжения. Основой рентгеновской спектроскопии высокого разрешения является закон Вульфа-Брэга, который связывает длину волны рентгеновских лучей l, отраженных от кристалла в направлении q, с межплоскостным расстоянием кристалла d.

Угол q называется углом скольжения. Он направлением падающих на кристалл или отражённых от него лучей с отражающей поверхностью кристалла. Число n характеризует так называемый порядок отражения, в котором при заданных l и d может наблюдаться дифракционный максимум.

Частота колебания рентгеновских лучей (n=с/l), испущенных каким-либо элементом, линейно связана с его атомным номером:

Ö n/R=A(Z-s) (2)

где n - частота излучения, Z – атомный номер элемента, R – постоянная Ридберга, равная 109737,303 см -1 , s - средняя константа экранирования, в небольших пределах, зависящая от Z, А – постоянная для данной линии величина.

Рентгеноспектральный анализ основан на использовании зависимости частоты излучения линий характеристического спектра элемента от их атомного номера и связи между интенсивностью этих линий и числом атомов, принимающих участие в излучении.

Рентгеновское возбуждение атомов вещества может возникать в результате бомбардировки образца электронами больших энергий или при его облучении рентгеновскими лучами. Первый процесс называется прямым возбуждением, последний – вторичным или флуоресцентным. В обоих случаях энергия электрона или кванта первичной рентгеновской радиации, бомбардирующих излучающий атом, должна быть больше энергии, необходимой для вырывания электрона из определённой внутренней оболочки атома. Электронная бомбардировка исследуемого вещества приводит к появлению не только характеристического спектра элемента, но и, как правило, достаточно интенсивного непрерывного излучения. Флуоресцентное излучение содержит только линейчатый спектр.

В ходе первичного возбуждения спектра происходит интенсивное разогревание исследуемого вещества, отсутствующее при вторичном возбуждении. Первичный метод возбуждения лучей предполагает помещение исследуемого вещества внутрь откачанной до высокого вакуума рентгеновской трубки, в то время как для получения спектров флуоресценции исследуемые образцы могут располагаться на пути пучка первичных рентгеновских лучей вне вакуума и легко сменять друг друга. Поэтому приборы, использующие спектры, флуоресценции (несмотря на то, что интенсивность вторичного излучения в тысячи раз меньше интенсивности лучей, полученных первичным методом), в последнее время почти полностью вытеснили из практики установки, в которых осуществляется возбуждение рентгеновских лучей с помощью потока быстрых электронов.

Аппаратура для рентгеноспектрального анализа.

Рентгеновский флуоресцентный спектрометр (рис 2) состоит из трёх основных узлов: рентгеновской трубки, излучение которой возбуждает спектр флуоресценции исследуемого образца, кристалла – анализатора для разложения лучей в спектр и детектора для измерения интенсивности спектральных линий.

Рис. 2. Схема рентгеновского многоканального флуоресцентного спектрометра с плоским (а) изогнутым (б) кристаллами: 1 – рентгеновская трубка; 2 – анализируемый образец; 3 – диафрагма Соллера; 4 – плоский и изогнутый (радиус – 2R) кристалл – анализаторы; 5 – детектор излучения; 6 – так называемый монитор, дополнительное регистрирующее устройство, позволяющее осуществлять измерение относительной интенсивности спектральных линий при отсутствии стабилизации интенсивности источника рентгеновского излучения; R – радиус так называемой окружности изображения.

В наиболее часто используемой на практике конструкции спектрометра источник излучения и детектор располагаются на одной окружности, называемой окружностью изображения, а кристалл – в центре. Кристалл может вращаться вокруг оси, проходящей через центр этой окружности. При изменении угла скольжения на величину q детектор поворачивается на угол 2q

Наряду со спектрометрами с плоским кристаллом широкое распространение получили фокусирующие рентгеновские спектрометры, работающие «на отражение» (методы Капицы – Иоганна и Иогансона) и на «прохождение» (методы Коуша и Дю-Монда). Они могут быть одно- и многоканальными. Многоканальные, так называемые рентгеновские квантометры, аутрометры и другие, позволяют одновременно определять большое число элементов и автоматизировать процесс анализа. обычно они снабжаются специальными рентгеновскими трубками и устройствами, обеспечивающими высокую степень стабилизации интенсивности рентгеновских лучей. Область длин волн, в которой может использоваться спектрометр, определяется межплоскостным расстоянием кристалла – анализатора (d). В соответствии с уравнением (1) кристалл не может «отражать» лучи, длина волн, которых превосходит 2d.

Число кристаллов, используемых в рентгеноспектральном анализе, довольно велико. Наиболее часто применяют кварц, слюду, гипс и LiF.

В качестве детекторов рентгеновского излучения, в зависимости от области спектра, с успехом используют сётчики Гейгера, пропорциональные, кристаллические и сцинтилляционные счётчики квантов.

Применение рентгеноспектрального анализа.

Рентгеноспектральный анализ может быть использован для количественного определения элементов от Mg 12 до U 92 в материалах сложного химического состава – в металлах и сплавах, минералах, стекле, керамике, цементах, пластмассах, абразивах, пыли и различных продуктах химических технологий. Наиболее широко рентгеноспектральный анализ применяют в металлургии и геологии для определения макро- (1-100%) и микрокомпонентов (10 -1 – 10 -3 %).

Иногда для повышения чувствительности рентгеноспектрального анализа его комбинируют с химическими и радиометрическими методами. Предельная чувствительность рентгеноспектрального анализа зависит от атомного номера определяемого элемента и среднего атомного номера определяемого образца. Оптимальные условия реализуются при определении элементов среднего атомного номера в образце, содержащем лёгкие элементы. Точность рентгеноспектрального анализа обычно 2-5 относительных процента, вес образца – несколько граммов. Длительность анализа от нескольких минут до 1 – 2 часов. Наибольшие трудности возникают при анализе элементов с малым Z и работе в мягкой области спектра.

На результаты анализа влияют общий состав пробы (поглощение), эффекты селективного возбуждения и поглощения излучения элементами – спутниками, а также фазовый состав и зернистость образцов.

Рентгеноспектральный анализ хорошо зарекомендовал себя при определении Pb и Br в нефти и бензинах, серы в газолине, примесей в смазках и продуктах износа в машинах, при анализе катализаторов, при осуществлении экспрессных силикатных анализов и других.

Для возбужения мягкого излучения и его использования в анализе успешно применяется бомбардировка образцов a-частицами (например от полониевого источника).

Важной областью применения рентгеноспектрального анализа является определение толщины защитных покрытий без нарушения поверхности изделий.

В тех случаях, когда не требуется высокого разрешения в разделении характеристического излучения от образца и анализируемые элементы отличаются по атомному номеру более чем на два, с успехом может быть применён бескристальный метод рентгеноспектрального анализа. В нём используется прямая пропорциональность между энергией кванта и амплитудой импульса, который создаётся им в пропорциональном или сцинтилляционном счётчиках. Это позволяет выделить и исследовать импульсы, соответствующие спектральной линии элемента с помощью амплитудного анализатора.

Важным методом рентгеноспектрального анализа является анализ микрообъёмов вещества.

Основу микроанализатора (рис. 3) составляет микрофокусная рентгеновская трубка, объединённая с оптическим металл - микроскопом.

Специальная электронно–оптическая система формирует тонкий электронный зонд, который бомбардирует небольшую, примерно 1 –2 мк, область исследуемого шлифа, помещённого на аноде, и возбуждает рентгеновские лучи, спектральный состав которых далее анализируется с помощью спектрографа с изогнутым кристаллом. Такой прибор позволяет проводить рентгеноспектральный анализ шлифа «в точке» на несколько элементов или исследовать распределение одного из них вдоль выбранного направления. В созданных позднее растровых микроанализаторах электронный зонд обегает заданную площадь поверхности анализируемого образца и позволяет наблюдать на экране монитора увеличенную в десятки раз картину распределения химических элементов на поверхности шлифа. Существуют как вакуумные (для мягкой области спектра), так и не вакуумные варианты таких приборов. Абсолютная чувствительность метода 10 -13 –10 -15 грамм. С его помощью с успехом анализируют фазовый состав легированных сплавов и исследуют степень их однородности, изучают распределения легирующих добавок в сплавах и их перераспределение в процессе старения, деформации или термообработки, исследуют процесс диффузии и структуры диффузионных и других промежуточных слоёв, изучают процессы, сопровождающие обработку и пайку жаропрочных сплавов, а также исследуют неметаллические объекты в химии, минералогии и геохимии. В последнем случае на поверхности шлифов предварительно напыляют тонкий слой (50-100Å) алюминия, бериллия или углерода.

Рис. 3. Схема рентгеновского микроанализатора Кастена и Гинье:

1 – электронная пушка; 2 – диафрагма; 3 – первая собирающая электростатическая линза; 4 – апертурная диафрагма; 5 – вторая собирающая электростатическая линза; 6 – исследуемый образец; 7 – рентгеновский спектрометр; 8 – зеркало; 9 – объектив металлографического оптического микроскопа; ВН – высокое напряжение.

Самостоятельным разделом рентгеноспектрального анализа является исследование тонкой структуры рентгеновских спектров поглощения и эмиссии атомов в химических соединениях и сплавах. Детальное изучение этого явления открывает пути для экспериментального исследования характера междуатомного взаимодействия в химических соединениях, металлах и сплавах и изучения энергетической структуры электронного спектра в них, определения эффективных зарядов, сосредоточенных на различных атомах в молекулах, и решения других вопросов химии и физики конденсированных сред.

Рентгеноструктурный анализ

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.

Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Рентгеноструктурный анализ является основным методом определения структуры кристаллов. При исследовании кристаллов он даёт наибольшую информацию. Это обусловлено тем, что кристаллы обладают строгой периодичностью строения и представляют собой созданною самой природой дифракционную решётку для рентгеновских лучей. Однако он доставляет ценные сведения и при исследовании тел с менее упорядоченной структурой, таких, как жидкости, аморфные тела, жидкие кристаллы, полимеры и другие. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, то есть выполнен фазовый анализ.

В ходе рентгеноструктурного анализа исследуемый образец помещают на пути рентгеновских лучей и регистрируют дифракционную картину, возникающую в результате взаимодействия лучей с веществом. На следующем этапе исследования анализируют дифракционную картину и расчётным путём устанавливают взаимное расположение частиц в пространстве, вызвавшее появление данной картины.

Рентгеноструктурный анализ кристаллических веществ распадается на два этапа.

Определение размеров элементарной ячейки кристалла, числа частиц (атомов, молекул) в элементарной ячейке и симметрии расположения частиц (так называемой пространственной группы). Эти данные получают путём анализа геометрии расположения дифракционных максимумов.

Расчёт электронной плотности внутри элементарной ячейки и определение координат атомов, которые отождествляются с положением максимумов электронной плотности. Эти данные получают анализом интенсивности дифракционных максимумов.

Методы рентгеновской съёмки кристаллов.

Существуют различные экспериментальные методы получения и регистрации дифракционной картины. В любом случае имеется источник рентгеновского излучения, система для выделения узкого пучка рентгеновских лучей, устройство для закрепления и ориентирования образца в пучке и приёмник рассеянного образцом излучения. Приёмником служит фотоплёнка, либо ионизационные или сцинтилляционные счётчики рентгеновских квантов. Метод регистрации с помощью счётчиков (дифрактометрический) обеспечивает значительно более высокую точность определения интенсивности регистрируемого излучения.

Из условия Вульфа – Брэгга непосредственно следует, что при регистрации дифракционной картины один из двух входящих в него параметров ¾ l -длина волны или q -угол падения, должен быть переменным.

Основными рентгеновской съёмки кристаллов являются: метод Лауэ, метод порошка (метод дебаеграмм), метод вращения и его разновидность – метод качания и различные методы рентгенгониометра.

В методе Лауэ на монокристаллический образец падает пучок немонохроматических («белых») лучей (рис. 4 а). Дифрагируют лишь те лучи, длины волн которых удовлетворяют условию Вульфа – Брэгга. Дифракционные пятна на лауграмме (рис.4 б) располагаются по эллипсам, гиперболам и прямым, обязательно проходящим через пятно от первичного пучка.

Рис. 4. а – Схема метода рентгеновской съёмки по Лауэ: 1- пучок рентгеновских лучей, падающих на монокристаллический образец; 2 – коллиматор; 3 – образец; 4 – дифрагированные лучи; 5 – плоская фотоплёнка;

б – типичная лауэграмма.

Важное свойство лауэграммы состоит в том, что при соответствующей ориентировке кристалла симметрия расположения этих кривых отражает симметрию кристалла. По характеру пятен на лауэграммах можно выявить внутренние напряжения и некоторые другие дефекты кристаллической структуры. Индицирование же отдельных пятен лауэграммы весьма затруднительно. Поэтому метод Лауэ применяют исключительно для нахождения нужной ориентировки кристалла и определения его элементов симметрии. Этим методом проверяют качество моно кристаллов при выборе образца для более полного структурного исследования.

В методе порошка (рис 5.а), так же как и во всех остальных описываемых ниже методах рентгеновской съёмки, используется монохроматическое излучение. Переменным параметром является угол q падения так как в поликристаллическом порошковом образце всегда присутствуют кристаллики любой ориентации по отношению к направлению первичного пучка.

Рис 5.а – схема рентгеновской съёмки по методу порошка: 1 – первичный пучок; 2 – порошковый или поликристаллический образец; 3 – фотоплёнка, свёрнутая по окружности; 4 – дифракционные конусы; 5 – «дуги» на фотоплёнке, возникающие при пересечении её поверхности с дифракционными конусами;

б – типичная порошковая рентгенограмма (дибаеграмма).

Лучи от всех кристалликов, у которых плоскости с данным межплоскостным расстоянием d hk1 находятся в «отражающем положении», то есть удовлетворяют условию Вульфа – Брэгга, образуют вокруг первичного луча конус с углом растра 4q. Каждому d hk1 соответствует свой дифракционный конус. Пересечение каждого конуса дифрагированных рентгеновских лучей с полоской фотоплёнки, свёрнутой в виде цилиндра, ось которого проходит через образец, приводит к появлению на ней следов, имеющих вид дужек, расположенных симметрично относительно первичного пучка (рис. 5.б). Зная расстояния между симметричными «дугами», можно вычислить соответствующие им межплоскостные расстояния d в кристалле.

Метод порошка наиболее прост и удобен с точки зрения техники экспермента, однако единственная поставляемая им информация – выбор межплоскостных расстояний – позволяе расшифровывать самы простые структуры.

В методе вращения (рис. 6.а) переменным параметром является угол q.

Съёмка производится на цилиндрическую фотоплёнку. В течение всего времени экспозиции кристалл равномерно вращается вокруг свей оси, совпадающей с каким-либо важным кристаллографическим направлением и с осью образуемого планкой цилиндра. Дифракционные лучи идут по образующим конусов, которые при пересечении с плёнкой дают линии, состоящие из пятен (так называемые слоевые линии (рис. 6.б).

Метод вращения даёт экспериментатору более богатую информацию, чем метод порошка. По расстояниям между слоевыми линиями можно рассчитать период решётки в направлении оси вращения кристалла.

Рис. 6.а – схема рентгеновской съёмки по методу вращения: 1 – первичный пучок;

2 – образец (вращается по стрелке); 3 – фотоплёнка цилиндрической формы;

б – типичная рентгенограмма вращения.

В рассматриваемом методе упрощается индицирование пятен рентгенограммы. Так если кристалл вращается вокруг оси с решётки, то все пятна на линии, проходящей через след первичного луча, имеют индексы (h,k,0), на соседних с ней слоевых линиях – соответственно (h,k,1) и (h,k,1 ¯) и так далее. Однако и метод вращения не даёт всей возможной информации, так никогда неизвестно, при каком угле поворота кристалла вокруг оси вращения образовалось то или иное дифракционное пятно.

В методе качания, который является разновидностью метода вращения, образец не совершает полного вращения, а «качается» вокруг той же оси в небольшом угловом интервале. Это облегчает индицирование пятен, так как позволяет как бы получать рентгенограмму вращения по частям и определять с точностью до величины интервала качания, под каким углом поворота кристалла к первичному пучку возникли те или иные дифракционные пятна.

Наиболее богатую информацию дают методы рентгеногониометра. Рентгеновский гониометр, прибор, с помощью которого можно одновременно регистрировать направление дифрагированных на исследуемом образце рентгеновских лучей и положение образца в момент возникновения дифракции. Один из них – метод Вайссенберга, является дальнейшим развитием метода вращения. В отличие от последнего, в рентгеногониометре Вайссенберга (рис. 7) все дифракционные конусы, кроме одного, закрываются цилиндрической ширмой, а пятна оставшегося дифракционного конуса (или, что то же, слоевой линии) «разворачиваются» на всю площадь фотоплёнки путём её возвратно-поступательного осевого перемещения синхронно с вращением кристалла. Это позволяет определить, при какой ориентации кристалла возникло каждое пятно вассенбергограммы.

Рис. 7. Принципиальная схема рентгенгониометра Вайссенберга: 1 – неподвижная ширма, пропускающая только один дифракционный конус; 2 – кристалл, поворачивающийся вокруг оси Х – Х; 3 – цилиндрическая фотоплёнка, двигающаяся поступательно вдоль оси Х – Х синхронно с вращением кристалла 2; 4 – дифракционный конус, пропущенный ширмой; 5 – первичный пучок.

Существуют и другие методы съёмки, в которых применяется одновременное синхронное движение образца и фотоплёнки. Важнейшими из них являются метод фотографирования обратной решётки и прецессионный метод Бюргера. Во всех этих методах использована фотографическая регистрация дифракционной картины. В рентгеновском дифрактометре можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов.

Применение рентгеноструктурного анализа.

Рентгеноструктурный анализ позволяет объективно устанавливать структуру кристаллических веществ, в том числе таких сложных, как витамины, антибиотики, координационные соединения и т.д. Полное структурное исследование кристалла часто позволяет решить и чисто химические задачи, например установление или уточнение химической формулы, типа связи, молекулярного веса при известной плотности или плотности при известном молекулярном весе, симметрии и конфигурации молекул и молекулярных ионов.

Рентгеноструктурный анализ с успехом применяется для изучения кристаллического состояния полимеров. Ценные сведения даёт рентгеноструктурный анализ и при исследовании аморфных и жидких тел. Рентгенограммы таких тел содержат несколько размытых дифракционных колец, интенсивность которых быстро падает с увеличением q. По ширине, форме и интенсивности этих колец можно делать заключения об особенностях ближнего порядка в той или иной конкретной жидкой или аморфной структуре.

Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая превратилась в отдельную отрасль науки. Понятие «рентгенография» включает в себя, наряду с полным или частичным рентгеноструктурным анализом, также и другие способы использования рентгеновских лучей – рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и другое. Определены структуры чистых металлов и многих сплавов. основанная на рентгеноструктурном анализе кристаллохимия сплавов – один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надёжно установленной, если данные сплавы не исследованы методами рентгеноструктурного анализа. Благодаря применению методов рентгеноструктурного анализа оказалось возможным глубоко изучить структурные изменения, протекающие в металлах и сплавах при их пластической и термической обработке.

Методу рентгеноструктурного анализа свойственны и серьёзные ограничения. Для проведения полного рентгеноструктурного анализа необходимо, чтобы вещество хорошо кристаллизовалось и давало достаточно устойчивые кристаллы. Иногда необходимо проводить исследование при высоких или низких температурах. Это сильно затрудняет проведение эксперимента. Полное исследование очень трудоёмко, длительно и сопряжено с большим объёмом вычислительной работы.

Для установления атомной структуры средней сложности (~50- 100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситомеры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). В связи с этим в последние годы для решения задач рентгеноструктурного анализа получили широкое применение быстродействующие ЭВМ. Однако даже с применением ЭВМ определение структуры остаётся сложной и трудоёмкой работой. Применение в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Позволяя объективно определить структуру молекул и общий характер взаимодействия молекул в кристалле, исследование методом рентгеноструктурного анализа не всегда даёт возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной для этой цели. Серьёзным ограничением метода является также трудность определения положений лёгких атомов и особенно атомов водорода.

Список литературы

Жданов Г.С. Физика твёрдого тела, М., 1962.

Блохин М.А., Физика рентгеновских лучей, 2 изд., М., 1957.

Блохин М.А., Методы рентгеноспектральных исследований, М., 1959.

Ванштейн Э.Е., Рентгеновские спектры атомов в молекулах химических соединений и в сплавах, М.-Л., 1950.

Бокай Г.Б., Порай-Кошиц М.А., Рентгеноструктурный анализ, М., 1964.

Шишаков Н.А., Основные понятия структурного анализа, М., 1961.

Последние материалы сайта